Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ying Zhang, Shu-Ping Zhang, Ying-Ying Wu and Si-Chang Shao*
Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.148$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Fluorobenzaldehyde salicylhydrazone

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}$, crystallizes with two molecules in the asymmetric unit. Both molecules are roughly planar and adopts a trans configuration with respect to the $\mathrm{C}=\mathrm{N}$ double bond. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds result in the formation of sheets parallel to the ac plane.

Comment

Schiff base compounds have been of great interest for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions (Brunner et al., 1983), magnetism and molecular architectures (Miller \& Epstein, 2000). The deprotonated hydroxyl group of the salicylhydrazone will sometimes cause the N atom of the hydrazone to become more electron-rich as a result of conjugation effects, and the N atom can thus coordinate more strongly (Bansse et al., 1998). As an extension of work on the structural characterization of salicylhydrazone Schiff base compounds (Ma et al., 2005), we report here the crystal structure of (I), a new salicylhydrazone with 4-fluorobenzaldehyde.

(I)

In the title compound, (I), which crystallizes with two molecules in the asymmetric unit (Fig. 1), $\mathrm{C}-\mathrm{N}$ bonds in the hydrazone units are rather short (Table 1) owing to conjugation effects (Ma et al., 2005). All other bond lengths are within normal ranges (Cambridge Structural Database, Version 5.26; Allen, 2002). The dihedral angles between the two benzene rings are 7.3 (2) ${ }^{\circ}$ and $8.7(1)^{\circ}$ in the two molecules.
The occurrence of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds results in the formation of infinite chains which are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming sheets parallel to the ac plane (Table 2 and Fig. 2).

Experimental

The reagents were commercial products and were used without further purification. 4-Fluorobenzaldehyde ($0.2 \mathrm{mmol}, 28 \mathrm{mg}$) and 2hydroxybenzhydrazide ($0.2 \mathrm{mmol}, 30.4 \mathrm{mg}$) were dissolved in methanol $(10 \mathrm{ml})$. The mixture was stirred at room temperature for

Received 17 November 2005
Accepted 5 December 2005
Online 10 December 2005

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are represented by dashed lines.
about 10 min to give a clear yellow solution. The solution was set aside for 8 d to allow slow evaporation of the solvent. Large colourless prism-shaped crystals separated; these were collected and washed three times with water.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}$
$M_{r}=258.25$
Monoclinic, $P 2_{1} / n$
$a=4.9532$ (4) \AA
$b=47.867$ (4) A
$c=10.7392(9) \AA$
$\beta=102.953$ (2) ${ }^{\circ}$
$V=2481.4(4) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.964, T_{\text {max }}=0.988$
23870 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.148$
$S=0.87$
4358 reflections
345 parameters
$D_{x}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3063 reflections
$\theta=4.7-41.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colourless
$0.35 \times 0.18 \times 0.12 \mathrm{~mm}$

4358 independent reflections
2137 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-56 \rightarrow 56$
$l=-12 \rightarrow 12$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.086 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 7$	$1.338(3)$	$\mathrm{N} 3-\mathrm{C} 21$	$1.340(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.370(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.383(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.263(3)$	$\mathrm{N} 4-\mathrm{C} 22$	$1.273(3)$

Figure 2
The crystal packing of (I), showing the formation of sheets. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 \cdots O4	0.82	1.86	$2.662(2)$	165
O3-H3 \cdots O $^{\mathrm{i}}$	0.82	1.86	$2.643(2)$	159
N1-H1A \cdots O1	0.86	2.00	$2.653(3)$	132
N1-H1A $\cdots 4^{\mathrm{ii}}$	0.86	2.53	$3.109(3)$	126
N3-H3A $\cdots \mathrm{O} 3$	0.86	1.94	$2.638(3)$	137

Symmetry codes: (i) $x+1, y, z-1$; (ii) $x-1, y, z$.

All H atoms were placed in geometrically idealized positions ($\mathrm{N}-$ $\mathrm{H} 0.86, \mathrm{O}-\mathrm{H} 0.82$ and $\mathrm{C}-\mathrm{H} 0.93 \AA$) and treated as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O}, \mathrm{N})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2005kj137.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bansse, W., Fliegner, J., Sawusch, S., Schilde, U. \& Uhlemann, E. (1998). Z. Naturforsch. Teil B, 53, 689-695.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winconsin.
Brunner, H., Riepl, G., Weitzer, H. (1983). Angew. Chem. Int. Ed. Engl. 22, 331-332.
Burnett, M. N. \& Johnson, C. K.(1996) ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Farrugia, L. J. (1997).J. Appl. Cryst. 30, 565.
Ma, J., Zhang, S. P., Sheng, L. Q., Fan, M., Yang, Y. L., Shao S. C. (2005). Acta Cryst. E61, o1747-o1748.
Miller, J. S. \& Epstein, A. J. (2000). Coord. Chem. Rev. 206-207, 651-660.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993) CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

